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Abstract Client-side data caching serves as an
excellent mechanism to store and analyze the
rapidly growing scientific data, motivating dis-
tributed, client-side caches built from unreliable
desktop storage contributions to store and access
large scientific data. They offer several desir-
able properties, such as performance impedance
matching, improved space utilization, and high
parallel I/O bandwidth. In this context, we are
faced with two key challenges: (1) the finite
amount of contributed cache space is stretched
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by the ever increasing scientific dataset sizes and
(2) the transient nature of volunteered storage
nodes impacts data availability. In this article, we
address these challenges by exploiting the exis-
tence of external, primary copies of datasets. We
propose a novel combination of prefix caching,
collective download, and remote partial data re-
covery (RPDR), to deal with optimal cache space
consumption and storage node volatility. Our
evaluation, performed on our FreeLoader proto-
type, indicates that prefix caching can significantly
improve the cache hit rate and partial data re-
covery is better than (or comparable to) many
persistent-data availability techniques.

Keywords Desktop grids · Storage scavenging ·
Scientific data

1 Introduction

The ever increasing disk capacity combined with
decreasing cost per gigabyte has created larger
amounts of unused disk space on desktop com-
puters. Studies have shown that, on average, half
of the disk space on desktop workstations is free
and that this fraction is only increasing as disks
become larger [2, 15]. As a result, numerous dis-
tributed file systems exist that aggregate desktop
storage, both in the local [2, 9] and the wide-area



X. Ma et al.

[16, 17] environments. These distributed storage
systems aim at delivering reliable and persistent
storage with data availability levels commensurate
to centralized file servers.

Scientists are faced with rapidly increasing
amounts of data collected from physical exper-
iments, observatory instruments, and computer
simulations [23, 53]. Scientists prefer to archive
their datasets at shared repositories, such as the
mass storage systems (e.g., HPSS [13]) and data
centers (e.g., SDSS [47]). These systems often
reside close to high-end computing or instrument
facilities, with convenient and fast data transfer
capabilities to and from the latter. They provide
large capacity and fault tolerance. However, sci-
entific computing workflows are often distributed,
requiring further analysis and visualization on sci-
entists’ local workstations. For instance, the re-
sulting data may have to be visualized to glean
insights or to add tweaks to the processing using a
feedback loop. Consequently, scientists’ personal
workstations are an integral part of their job work-
flow. Personal workstations possess indispensable
display and interactive processing capabilities, but
often lack sufficient storage capacity or band-
width. Despite the growing PC storage space, sci-
entific dataset sizes can easily overwhelm a single
workstation. The upshot is that end-users are not
able to store all their data locally and often resort
to expensive, repeated wide-area data movement.

There exists a performance impedance mis-
match between the rates at which end-user ap-
plications consume data locally and retrieve data
from shared repositories. Despite the perfor-
mance improvement in recent years, wide-area
data transfers are the most common bottleneck
in an end-to-end scientific data processing work-
flow [55]. Aggregated storage within the scientist’s
LAN provides a low-cost alternative to buying
and maintaining dedicated storage servers or clus-
ters. In addition to space aggregation, striping
data on multiple nodes, each of which contributing
a fraction of its unused storage, also enables band-
width aggregation. This results in better overall
access throughput. These techniques have been
shown to be viable in our previous work on Free-
Loader [57, 58], an aggregate storage infrastruc-
ture for large scientific datasets.

Scientists normally perform a variety of
processing tasks on groups of datasets (e.g., time-
series results generated from a recent parallel
simulation) for a limited period of time, typically
days or weeks. Meanwhile, colleagues working
in the same research area tend to have shared
interests on common data [25]. Therefore, the
collective free space is suitable to be positioned
as a cache for remote data. This reduces repeated
wide-area data migration costs for scientists
reusing hot datasets and helps achieve better
access throughput than retrieving data from
one’s local hard disk. Compared to quota-based
resource allocation, common in general-purpose
file systems, a cache replacement policy allows for
better capacity management. It accommodates
large datasets and achieves better overall space
utilization.

However, existing systems cache scientific
datasets in their entirety, while scavenged stor-
age systems have to be particularly careful about
space and bandwidth usage. We show that stor-
ing large datasets in their entirety is not neces-
sary, and propose a novel combination of prefix
caching and collective download, two techniques
originating from the multimedia data streaming
and parallel I/O fields respectively [33]. Prefix
caching allows the storage of only partial datasets,
while collective download allows seamless and
fast parallel downloads of the uncached suffix. In
particular, our proposed approach achieves effi-
cient parallel data retrieval from external scientific
data repositories by issuing large, sequential file
transfer requests. It further maintains high local
cache access performance by rearranging the data
for finer-grained data striping.

Another challenge posed by caching data on
distributed, unreliable workstations is data avail-
ability. The storage nodes in our target environ-
ment are ordinary workstations that are subject
to shutdowns, reboots, and failures. Striped data
placement, combined with the sequential data ac-
cess pattern, complicates caching when one or
more storage nodes fail and recover dynamically.
In other words, “partial cache miss” has to be
dealt with.

Existing work on storage systems has addressed
the data availability in distributed and unreliable
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environments by adding redundancy. However,
data redundancy reduces the effective cache size,
which decreases the overall data availability. Sci-
entific data caches built atop distributed worksta-
tions, on the other hand, can take advantage of the
existing data redundancy external to the local net-
work environment. Scientific datasets usually have
primary, immutable copies archived at external
data repositories. These include mass storage sys-
tems, shared file systems at supercomputers, data
centers (such as SDSS [47]), and websites (such
as the NCBI Genbank [34]). Unlike personal files
stored on the general-purpose file systems, data
availability guarantee for the local copies of sci-
entific datasets is not a crucial requirement. Data
availability, in such cases, translates into a perfor-
mance issue: in response to a data miss—caused by
new accesses, cache eviction operations, or donor
node failures—remote accesses are conducted to
fetch the missing data portions.

In this paper, we investigate the performance
impact of data availability in distributed caches
built on unreliable workstations. More specif-
ically, we consider our major contributions as
below.

– We have designed and implemented cache
management strategies that handle striped
datasets and the failure/recovery of individual
storage nodes.

– We proposed RPDR (remote partial data
recovery from external repositories), an ap-
proach that reduces the partial data miss
penalty in a distributed, dynamic, and unre-
liable cache. We further augmented RPDR
with two techniques: prefix caching and
collective downloads. We also investigated
two redundancy-based approaches (replica-
tion and erasure coding) in the data striping,
distributed caching context.

– We performed trace-driven simulation to eval-
uate the effectiveness of the above three
data recovery approaches. We co-played real-
world scientific data access traces with real-
world node availability traces, and computed
the data access cost using partial data recov-
ery performance parameters measured from
an aggregate storage system implementation.

The results revealed that our proposed RPDR
approach and a combination of RPDR and
erasure coding perform the best in most of the
test cases, with a performance advantage of up
to 38% and 54% over the redundancy-based
approaches for the two data access traces re-
spectively.

The individual elements of this study, such as
partial data caching, striping, fault-tolerance in
distributed storage, and patching data from re-
mote sites, are themselves not new. However,
the key novelty of our work lies in the com-
bination of these elements, i.e., the examination
of recovery strategies for striped data cached on
unreliable nodes. This combination of the above
techniques is motivated by real needs of scien-
tific data processing, and evaluated with scientific
workloads.

2 Background

2.1 FreeLoader: An Aggregate Storage
System Prototype

Our simulation-based study is motivated by, and
parameterized with the FreeLoader storage ag-
gregation prototype [57], built atop scavenged
storage resources. It aggregates unused disk space
in a LAN setting into a unified cache and scratch
space for storing scientific datasets. In our proto-
type, participating workstations donate idle disk
space and data is striped on multiple such storage
nodes in fixed-size chunks.

A dedicated manager node maintains meta-
data such as node status, chunk distribution, and
dataset attributes including the primary copy lo-
cation (URI, protocol/tool used to retrieve/import
the dataset, and authentication related metadata).
Since this system is positioned to cache popular
scientific datasets with primary copies at external
data repositories, aforementioned metadata con-
cerning dataset import enables transparent recov-
ery of datasets from their primary copies. Further,
this consumes no additional metadata storage
than what is required to store a dataset. Figure 1a
illustrates the system design.
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Fig. 1 The FreeLoader environment overview and sample performance (a, b)

Figure 1b demonstrates FreeLoader’s data
access performance by showing the client-side
dataset retrieval rates using different stripe widths
and dataset sizes. The experiments were per-
formed on a client workstation with a Gbit/s
network interface and a group of storage nodes
with mixed interfaces (Gbit/s or 100 Mbit/s). The
client’s Gb/s network configuration is meant to
capture scientists’ high-end desktop workstations
with good connectivity for scientific data process-
ing. The storage nodes’ configuration (100 Mb/s
connectivity) is meant to show how FreeLoader
can reap significant throughput even in the face
of modest connectivity. Figure 1b shows that in
such an environment, the benefits due to stor-
age aggregation through striping are manifold.
First, it provides larger capacity by utilizing other
workstations’ unused disk space. Second, it also
provides a performance benefit by aggregating
I/O and network bandwidth available at the dis-
tributed machines. Third, even when a user can
accommodate her datasets at her own worksta-
tion, storing such data in an aggregated cache
(such as the one prototyped) will deliver an I/O
throughput (as high as 88 MB/s with a stripe
width of 10) significantly better than local disk
I/O rate (typically 30–50 MB/s). Finally, our prior
results revealed that striping is also an effective

way to reduce the impact on space donors’ native
workloads.

2.2 Related Work

In this section, we will survey related work with
reference to prefix caching, collective download
and data availability.

Prefix caching [24, 49] techniques have been
proposed and implemented for multimedia
streaming protocols such as the IETF Real-Time
Streaming Protocol [46] that is built on HTTP.
Our work applies prefix caching to scientific data
storage/access, and leverages the parallel transfer
capability offered by tools such as GridFTP [3, 4],
HSI [22], and LoRS [39].

Middleman cache for video files on the Web is
similar to our effort [1]. It is a cooperative proxy
cache built from client workstations. However, it
only exploits collaborating workstations for aggre-
gate space and not for improved bandwidth. An-
other similar project on Internet streaming uses
a combination of network bandwidth estimation
between the client, cache and server to optimize
media delivery [26]. We use similar information to
determine the ideal prefix size.

Scientific data caches like IBP [40] and DPSS
[56] all provide techniques to accelerate data
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accesses by offering dataset caching. However,
they support only entire dataset caching and per-
form cache management by enforcing user quotas.
Moreover, users explicitly have to create space for
new incoming data by deleting datasets that they
no longer require. In brief, cache replacement is
not dynamic and is left to user discretion. Our
proposed approach can potentially be used by the
above systems for better cache space utilization,
especially when parallel data transfer is available
in retrieving uncached data.

Our collective download approach resembles
the collective I/O technique extensively studied in
the parallel I/O field and widely used in parallel
simulations [8, 28, 35, 48, 54]. Collective I/O at-
tacks the I/O performance problem caused by a
mismatch of data distribution in memory and in
files by consolidating small, scattered I/O requests
into large, sequential ones. Although collective
I/O has been used in conjunction with wide-area
data migration [29, 30], it was applied to the lo-
cal staging step only. We extend this approach
to parallel download, by issuing a small number
of large, sequential partial file transfer requests,
in order to achieve better overall downloading
performance.

Predictive prefetching is a widely researched
topic to improve WWW as well as cache perfor-
mance [27, 37]. This can also be applied to data
caches when hints about user access patterns are
available a priori or when such patterns can be
automatically detected. In this paper, however, we
focus on sequential access patterns.

Data availability and fault tolerance in storage
and file systems have been studied extensively.
Creating hardware/data redundancy has been a
traditional approach to address these problems.
Common hardware solutions include, among oth-
ers, many versions of RAID systems [38] and
node failover strategies [11, 45]. Several software
approaches to data availability have also been de-
ployed, especially in distributed and peer-to-peer
environments. In particular, replication is widely
used and investigated [2, 6, 7, 9, 12, 21, 51]. Sim-
ilarly, there are many existing studies on erasure
coding, and an increasing interest in deploying it
in storage and peer-to-peer systems [10, 41–43].
This paper studies these existing mechanisms in a

distributed cache with data-striping, and compares
them with a new data recovery method that does
not rely on local data redundancy. Our trace-
driven evaluation, based on workstation avail-
ability data in a LAN setting, complements a
previous study performing theoretical compari-
son [59].

Our work is also related to several areas of
research on caching. Our proposed scientific data
caching can be viewed as extended cooperative
caching [14, 18, 20, 44]: it pools secondary storage
in a LAN environment to reduce access misses
that require wide-area data transfers from ex-
ternal data sources. In addition, datasets in the
cache are likely to be from different external data
repositories. Therefore, they are likely to have
different downloading costs and may benefit from
cost-aware caching [19, 60]. Again, our effort com-
plements the above work and recent research in
scientific data caching [36] by investigating the
combination of striping and caching on unreliable
distributed workstations.

This paper targets distributed caches built by
amassing donated disk space, and is closely related
to storage aggregation systems [2, 9] and more
generally, resource scavenging systems [32, 50].
However, existing storage aggregation systems are
typically designed to act as general-purpose file
systems and require high data availability. For
instance, both FARSITE [2] and Kosha [9] repli-
cate each dataset at least three times. In contrast,
our system is positioned as a best-effort cache
for better data access performance. In our target
scenario, “six nines” of data availability is not re-
quired. We treat both events—losing data to cache
eviction or to node failure—as an acceptable norm
that our system will respond to.

Downloading distributed chunks of data is a
common practice to expedite data accesses. This
has been combined with erasure coding to be
more fault tolerant (e.g., OceanStore [17], Dig-
ital Fountain [10]). As mentioned earlier, prefix
caching of Internet media files has been widely
deployed and used. Striping or performing col-
lective I/O to improve performance is a well
accepted norm in the parallel I/O community.
However, the amalgamation of several afore-
mentioned techniques—into a novel, partial data
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recovery scheme—is unique in this paper. Further,
this is applied to the emerging problem of caching
bulk scientific data.

3 Striping-Enabled Cache Management

To store datasets in a striped fashion on the ag-
gregate storage, we manage the entire space as
a single cache. This section presents our striping
algorithm.

Striping is dependent on the space contribu-
tions on the individual storage nodes. An appro-
priate stripe width (i.e., the number of storage
nodes a client communicates with concurrently
to retrieve the dataset) allows the client to fully
utilize its network bandwidth, and allows the ag-
gregated storage system to reduce metadata man-
agement, distribution costs, and impact on donor
nodes. Successful striping of incoming datasets im-
plies the ability to distribute data across a desired
stripe width as uniformly as possible. This ensures
good retrieval rates as well as a fair usage of space
across all donors. Therefore, we adopt a greedy
algorithm that sorts the current available space
on storage nodes in descending order, and per-
forms striping on w storage nodes, where w is the
target stripe width. The sorting-striping process is
repeated if one of the storage nodes (the one with
the smallest available space) runs out of space
before the dataset is completely striped. Note that
when there are fewer than w storage nodes with
space available, a smaller stripe width has to be
adopted.

Below, we sketch the GreedyStriping(D, w, N)

algorithm, where D is the dataset to be striped,
w is the target stripe width, and N is the set of
storage nodes participating in the aggregated stor-
age system. D has length(D) chunks. Each storage
node N[i] (1 ≤ i ≤ |N|) has avail(N[i]) chunks of
currently available space. When GreedyStriping
is performed, the sum of avail(N[i]) has to be
greater than or equal to length(D). Otherwise,
cache eviction will be carried out first.

We perform cache eviction at the granularity
of datasets and within datasets, at the granularity
of chunks. When cache replacement is needed, we
calculate how many chunks must be reclaimed to
store the incoming dataset. We then select victim

Algorithm 1 GreedyStriping(D, w, N)

chunk = 0
while chunk < length(D) do

sort N by value of avail in descending order
nodes = number of storage nodes with
avail > 0
width = min(nodes, w, length(D) − chunk)

rounds = min(� length(D)−chunk
width �,

avail(N[width]))
for i = 1 to rounds do

for j = 1 to width do
chunk=chunk + 1
assign chunk D[chunk] to storage node
N[ j]

end for
end for

end while

dataset(s) from those cached, using a cache man-
agement strategy such as LRU. Within each victim
dataset, the eviction of chunks starts from the tail
end since most large scientific data accesses are se-
quential. Therefore, if only part of the last dataset
needs to be evicted, a prefix of that dataset will still
remain in the cache. For each data chunk evicted,
we increase the number of available chunks for
the corresponding storage node by one. Note
that the status of the concerned storage nodes
are checked during the replacement process: if a
chunk—marked for eviction—resides on a storage
node that is currently unavailable, the chunk will
be marked as “evicted” in the manager metadata.
The storage node needs to reconcile (synchronize
metadata) with the manager once it comes back
to service. The space occupied by these evicted
chunks on a returning node will be considered
as “available”. In this manner, it is ensured that
at the end of eviction, the number of available
chunks on a subset of storage nodes is commen-
surate to the space required by the new dataset.
Finally, the aforementioned GreedyStriping algo-
rithm will be applied to stripe the new dataset on
to these storage nodes.

With our striping-enabled cache management
strategy, there are three types of cache misses. (1)
Total miss: This occurs when the dataset in ques-
tion has never been imported, has been evicted in
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its entirety, or all the storage nodes hosting it are
currently unavailable (which is not very likely with
a reasonable stripe width). (2) Partial miss: This
happens when the dataset is cached, but some of
the storage nodes hosting it are unavailable. (3)
Tail miss: This occurs when the dataset is cached,
all the storage nodes hosting it are available, but
a suffix of it is missing due to cache eviction.
In a subsequent section, we will discuss the cost
of these misses in conjunction with several data
recovery methods studied in this paper.

4 Recovery of Distributed, Striped Data

Striping data over nodes with transient availabil-
ity often causes a cache hit to become a partial
cache miss, when one or more storage nodes,
hosting segments of a cached dataset, fail to serve
requested data. In the storage aggregation con-
text, nodes are individually-owned PCs donating
a portion of their local disk space. Hence col-
lective node availability cannot be scheduled or
planned. As a result, sudden benefactor shut-
down/crash/withdrawal might render the distrib-
uted storage system with little to no time for
corrective measures such as data relocation.

In this paper, we examine three data recovery
strategies. First, we explore direct partial data
recovery from external data sources. We then con-
sider two existing alternatives, namely replication
and erasure coding, and discuss their functioning
in a distributed, unreliable cache. We integrate
all three approaches into our cache management
scheme and derive cost models to calculate cache
miss penalty for each type of miss.

4.1 RPDR: Remote Partial Data Recovery

4.1.1 Methodology

We propose Remote Partial Data Recovery
(RPDR), which “patches” a partially unavailable
dataset by fetching missing data portions from a
remote primary copy in an on-demand fashion.
This approach takes advantage of the following
two trends. First, scientific datasets cached locally
tend to have remote primary copies stored at

systems such as mass storage and data centers with
relatively high availability. Second, bulk scientific
data movement tools such as HSI, GridFTP [3, 4],
and LoRS [39] are increasingly supporting “ex-
tended retrieve” features. Of particular interest
to us is their ability to fetch partial copies of a
dataset, which enables the retrieval of a section
of the dataset, defined by its starting offset and
extent.

Note that RPDR is designed to work in con-
junction with local caching of scientific datasets.
Therefore the I/O and network workload gen-
erated by recovery will not exceed those of the
original data access pattern without local caching.
Meanwhile, we have shown that the negative
performance impact of data fetching/serving on
donated storage is modest [57] and can be well
controlled [52].

RPDR augments the basic striping-aware cache
replacement policy with mechanisms to handle
full or partial data misses in a unified manner.
This is achieved as follows. When a dataset D
is accessed, the manager node searches for the
dataset in the cache. If D is found, the manager
checks the current status of storage nodes that
host this dataset. For each contiguous segment of
D striped in a round-robin fashion on the same set
of storage nodes N1, N2, ..., Nk (where k≤w and w

is the target stripe width), the manager identifies
the length of the segment l (each node hosts l
chunks) and the number of unavailable nodes f
( f≤k). If f > 0, f×l data chunks have to be re-
covered. Before data can be recovered, sufficient
space needs to be created through eviction. Cache
replacement is invoked to evict f×l chunks, fol-
lowed by the invocation of the striping algorithm
to reallocate this space to the data being fetched
from D’s primary copy at an external source.

This reallocation is accomplished by first sort-
ing the storage nodes on available space, then per-
forming the greedy striping process for the missing
chunks of D with an initial stripe width of f . This
way, the number of storage nodes communicating
with the client simultaneously is controlled to be
close to the target stripe width, w. Chunks of D on
the f unavailable storage nodes are marked by the
manager as dirty. If these nodes become available
again, they will synchronize the status of their
local data chunks during their first interaction with
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the manager. At that point, these chunks become
free and may be allocated to other datasets.

Once sufficient room has been made for the
missing chunks of D, RPDR retrieves these
chunks from the dataset’s primary storage loca-
tion (typically at a remote site such as an archival
system) to “patch” the cached copy of D. Free-
Loader assumes that a remotely-accessible dataset
has a web address or URI, which is used as a
unique identifier for the dataset in the aggre-
gate storage namespace. The protocol and the
command used to download the dataset are also
managed by FreeLoader as a part of the dataset
metadata.

It can be seen that with this policy, a full miss
is treated as a special case of partial misses, only
with additional operations such as registering the
dataset and creating metadata entries. In this case,
eviction has to be performed to accommodate the
entire dataset, D, and the greedy striping starts
with the target stripe width. Tail misses are han-
dled in a similar fashion, although the dataset
entry is already in the cache.

With RPDR, a partially cached dataset can still
be accessed while being patched, therefore we
adopt a modified cache management policy from
the one defined in Section 3. Eviction is performed
at the chunk level rather than at the dataset level.
Thus, instead of evicting chunks from only one
dataset at a time, a round-robin method is used
to evict tail chunks from datasets with the same
heat index. In doing so, we exploit the fact that a
tail patch operation can be easily overlapped with
client-serving of the cached chunks.

4.1.2 Coupling RPDR with Prefix Caching
and Collective Download

Remote partial data recovery can also be cou-
pled with a combination of two techniques
that we applied previously to FreeLoader [33],
namely prefix caching and collective download, for
more efficient—and more sophisticated—cache
management.

As mentioned earlier, RPDR uses remote ac-
cesses to patch disjoint “holes” or a suffix in a
dataset, caused by node unavailability, cold miss,
or partial data eviction. One obvious approach is
to have multiple storage nodes download their tar-

get stripes directly from the remote source. With
data striping (where stripe sizes typically range
from several hundred KBs to dozens of MBs),
however, this would result in numerous small re-
quests. A more efficient alternative is to let each
node download a large, contiguous data segment
and perform local data shuffling to exchange data
stripes. We refer to this as collective download,
following similar concepts of collective I/O [8, 28,
35, 48, 54]. The downloaded data is simultaneously
shuffled locally for a rearranged layout, conform-
ing to the smaller stripe size used in the distrib-
uted cache. It is not difficult to pipeline the data
shuffling with data download, so the cost of the
faster operation is hidden. Further, parallel data
download and data shuffling can be interleaved
with serving data stripes to the client.

To leverage the partial data transfer capability
of popular scientific data migration tools such as
GridFTP [3, 5] and HSI [22], we used Expect
[31], a tool specifically geared towards automating
interactive applications. We have instrumented
the FreeLoader patching framework with Expect
so that authentications and subsequent partial re-
trieval requests to a remote source can be per-
formed over a single stateful session. More design
and implementation details can be found in our
previous publication [33].

Next, we couple collective download and prefix
caching together with RPDR for better space uti-
lization. With prefix caching, only a prefix of the
dataset is cached on initial import. It allows us to
“bootstrap” the data download process with the
in-cache prefix, as a lazy method in the sense that
complete retrievals are not initiated until datasets
are actually accessed. Upon the access request ar-
rival, the cached prefix is served to the client while
the missing suffix is fetched and patched transpar-
ently from the primary data source. Even then, the
retrieved suffix is stored in, but streamed through
the cache. By overlapping in-cache data access
with remote data retrieval, prefix caching helps in
maximizing space utilization and increasing cache
hit ratio by offering a virtual cache that appears
to be larger than the physically available cache
space. Compared to caching entire datasets, users
enjoy higher hit rate without suffering degraded
data retrieval performance while accessing cached
datasets.
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To hide the cost of suffix patching, a sufficiently
large prefix of the dataset should cached. The
desired prefix size is determined based on four pa-
rameters: the size of the dataset, the in-cache data
access rate, the suffix patching rate, and the suffix
patching initial startup latency. Consequently, the
ideal prefix depends on the internal and external
environments. The following model determines
the size of the prefix, Spref ix, necessary to ensure
that the uncached suffix will be fetched in time to
deliver the same local access performance as if the
entire dataset were cached. It assumes sequential
access from the client, which as explained earlier,
is often true for scientific data processing.

Suppose the dataset size is S and the in-cache
client access rate afforded by the distributed cache
is Rclient. The cost of parallel patching from the
external data source is formulated into two parts:
the initial size-independent overhead L (which
includes the costs of creating the connection, au-
thentication, tape system file loading, etc.), and
the size-dependent cost of parallel data transfer
at the aggregate rate Rcollective. We assume that
Rcollective < Rclient, which means the client fetches
data from the local cache faster than directly from
the external data source—implying the need for
a cache. The equation below equates client ac-
cess time and the time of the two components of
patching,

S
Rclient

= L + S − Spref ix

Rcollective
.

Solving for the prefix size, we get

Spref ix = S
(

1 − Rcollective

Rclient

)
+ LRcollective.

With this model, the appropriate prefix size can
be calculated for each individual dataset, taking
into account the external source storing its pri-
mary copy. Parameters such as L and Rcollective

for each data source can be stored at the cache
manager as a part of the metadata. As the total
number of scientific repositories for a dataset is
limited, the time and effort required to benchmark
and save such parameters should not be signifi-
cant. In addition, these parameters can be derived
from actual dataset imports and suffix patches,
enabling the prefix size prediction to adapt to

changes in the remote storage systems and in
networking hardware/software.

Note that after the re-access, the patched tail is
discarded after the re-access. When the cache is
full and more space is needed for a new dataset,
chunks are evicted from the tail of the cached
prefix just like in the base version of RPDR. This
results in a tail miss with a visible performance
penalty while accessing that particular dataset.

In Section 5.3, we will evaluate both the base
RPDR strategy and the enhanced version with
prefix caching and collective download.

4.2 Striping-enabled Local Recovery through
Data Redundancy

A storage aggregation system built on an unreli-
able distributed storage fabrics can also improve
data availability through local data recovery, typ-
ically by storing redundant data. We examine
two commonly used local recovery mechanisms,
replication and erasure coding, in the distributed
cache setting and compare them with our pro-
posed strategies.

Replication is widely used in parallel or distrib-
uted file systems [21, 45] and storage aggregation
systems [2, 9, 17]. With replication, a dataset is du-
plicated a number of times in a storage system, to
prepare for disk/network failure. The advantage
of replication is its simplicity and ability to achieve
high data availability. For example, a study has
shown that a 99.99% data availability can be
obtained by replicating all files three times in a
distributed file system built on top of unreliable
donated disk space [9]. This study was based on
the same Microsoft node availability trace used in
this paper (see Section 5.1 for more details). The
apparent disadvantage of replication is its space
overhead. While this is an acceptable overhead for
distributed file systems, a cache built from space
contributions works differently. The cache space
is a finite amount of storage based on desktop
space donations. For a distributed cache storing
“hot” data items, replicating each dataset n times
basically cuts the cache space to 1/n of its original
size. This results in further cache misses, which
is another form of data unavailability and may
cause more performance penalty in data accesses
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compared to partial dataset loss due to temporal
node unavailability.

Erasure coding [42, 43] is a general scheme for
error correction and data recovery, first proposed
for network communication and more recently
used in peer-to-peer systems and distributed stor-
age systems. For each n blocks of the original
data, an erasure code can encode m additional
redundant blocks, allowing the original data to
be reconstructed from any n out of the n + m
blocks. Obviously, with a moderate m, erasure
codes can deliver comparable or better data avail-
ability than replication [59], while consuming a
fraction of extra space as required by the latter.
This makes erasure coding more appealing in data
caches built out of aggregated space. However,
the major concern with it is the extra encoding
and decoding overhead. In a storage aggregation
system, space donors may hesitate to donate any
more resource than they already do. Thus, any
computationally intensive encoding or decoding
will need be performed at the client, which im-
ports or subsequently accesses a dataset.

To conduct performance comparisons between
the different data recovery approaches, we need
to first determine the replication and erasure cod-
ing strategies in a data-striping environment too,
as briefly outlined below.

For replication-k, where k is the degree of
replication, we perform striping of k copies of
each dataset using our greedy striping algorithm
defined in Section 3. If the cache is too small to
fit in k replicas, we create as many replicas as
allowed by the cache size. If, during a subsequent
access, we find there is additional space to create
more replica(s) for the dataset being accessed
(this is possible due to the unreliable nature of the
storage nodes, the total available cache size may
vary), such replica(s) will be stored. The k replicas
are managed individually by the chosen cache
replacement policy. The access-history-based heat
index of each dataset is adjusted by a factor of
the number of its replicas, so that dataset with
more replicas are more likely to be evicted in
cache replacement. At dataset retrieval time, data
chunks can be selected from multiple replicas. If
there are chunks missing from all in-cache replicas
due to node failures and/or tail eviction, the access
is considered a miss.

For erasure coding, we encode the w (where w

is the stripe width) data chunks into m redundant
chunks, and stripe the dataset with a stripe width
of (w + m). Extra care is taken to make sure that
the stripe width does not “shrink”, so that each
round of chunks actually occupy (w + m) different
nodes. Note this may call for additional cache
eviction in search of enough nodes. Therefore,
the space overhead of this method will end up
being larger than m/w, since excessive amounts of
data chunks may be evicted, rendering a smaller
effective cache space.

4.3 Data Recovery Cost Model

To evaluate the performance of the three recovery
approaches, we need to model the cost of data
recovery for the various types of cache misses.
Since most scientific data processing applications
access data in sequential or approximately se-
quential styles, we model the client’s data access
as a sequential scan to retrieve a dataset’s chunks
in order.

First, we analyze the data recovery cost for
RPDR. In this case, the storage nodes involved in
importing or patching a dataset D will download
data chunks in parallel, sending these chunks to
the client while saving them to their local disks.
Since the manager can perform cache replacement
and decide in very short time which storage nodes
need to fetch missing data from a remote site,
we allow all these nodes to start downloading
together, while the client requests data chunks
from the nodes according to the chunk map. Since
different rounds of striping may involve a differ-
ent subset of nodes, “holes” in a partially available
dataset may start or end at arbitrary positions.

Let Rn be the download throughput of each
patching node, when n such nodes are retriev-
ing interleaved data chunks simultaneously. Since
we select the target stripe width, w, to be large
enough to saturate the client’s incoming network
connection, the expected data serving throughput
for each storage node is Re = RC

w
, where RC is the

maximum client network read rate. The question
is whether the download throughput at the patch-
ing nodes can catch up with Re. When Rn≥Re, the
remote data retrieval at a patching node is faster
than the rate that node is supposed to deliver data
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Table 1 Cost of data accesses with different recovery methods

Dataset’s caching status Recovery method

RPDR REPL EC

Hit Tlocal Tlocal Tlocal

Partial miss Tpatch min(Ttail−patch, Tclient) max(Tlocal, Tdecode)

Tail miss max(Tlocal, Ttail−patch) min(Ttail−patch, Tclient) max(min(Ttail−patch, Tclient), Tencode)

Total miss min(Ttail−patch, Tclient) min(Ttail−patch, Tclient) max(min(Ttail−patch, Tclient), Tencode)

to the client, partial data recovery does not have
a client-visible performance impact. Otherwise, a
cache miss penalty may be observed.

With the chunk map, for each patching node
Pi, we can compute si, the number of chunks that
Pi is responsible for fetching remotely, as well
as the expected point in time Te,i, j when the jth
missing chunk from Pi needs to be delivered at
the client. By aligning the missing chunks together
from all patching nodes, we compute the point in
time Tp,i, j when the jth missing chunk is retrieved
from the remote primary copy:

Tp,i, j =
j∑

k=1

chunk_size
Rnk

,

where nk is the number of patching nodes fetch-
ing data concurrently when Pi is fetching its kth
chunk. Then the cache miss penalty, Tpenalty, is
calculated as

max
i, j

(Tp,i, j − Te,i, j),

the maximum latency of data patching among
patching nodes. The total access cost, Tpatch, is
then defined as (Tlocal + Tpenalty).

The above RPDR recovery scheme and cor-
responding cost computation are based on ob-
servations collected from parallel partial data
recovery benchmarking experiments. From our
experiments we have found that most data sources
show good download bandwidth scalability when
we increase the number of patching nodes, each
fetching noncontiguous (or contiguous when per-
forming collective download) data chunks. Hence,
we let all patching nodes start downloading their
data chunks at the beginning of a client data ac-
cess. This will allow the missing data to be fetched
early, without affecting the rate that “urgent”
data chunks are downloaded and served to the

client. More details about the design and results
of related benchmarking tests will be discussed in
Section 5.2.

A tail miss—or a total miss, for that matter—
is conceptually same as a partial miss. How-
ever, with collective download, they can be
implemented in a much more efficient way. As
discussed in Section 4.1.2, for a large missing
segment in a dataset, it is efficient to have mul-
tiple nodes downloading contiguous sections of
that segment, while also performing local data
exchange to achieve a desired striping pattern.
Suppose the collective download (including the
shuffling process) can be performed at a rate of
Rcollective, the tail patching cost Ttail−patch is calcu-
lated as size(D)/Rcollective.

Finally, the above total miss cost model may
need to be adjusted depending on the client’s
direct access rate from the target external source.
With certain data sources, a direct download of
the entire dataset by the client may yield better
aggregate access rates. With the benchmarking
results, it is easy to determine whether the client
download rate Rclient is indeed higher than the ag-
gregate patching rate for a total miss wRw (where
w is the stripe width). If this is the case, we cal-
culate the cost of a total miss as the duration of
a client download, which can be overlapped with
striping data chunks to storage nodes.1

The recovery cost for the other two approaches,
replication and erasure coding, is much more
straight-forward. Table 1 summarizes how we
characterize the cost of accessing a dataset in an
unreliable distributed cache with data striping,

1This did not happen with the four external data sources
that we benchmarked.
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for the three data recovery methods we study:
remote partial data recovery (RPDR), replication
(REPL), and erasure coding (EC). These models
are used in our trace-driven simulations to calcu-
late the total access time for a sequence of ac-
cesses. Note that different methods will generate
different distributions of accesses, falling into the
cache status categories.

When the dataset being accessed is in-cache
and all its chunks are available, the cost of access
is the same across all three methods: the local data
transfer time between the storage nodes and the
client (Tlocal).

When the dataset is a total miss, with RPDR
or REPL the access cost is the downloading time
to bring the missing dataset into the cache. This is
done either through the storage nodes (Ttail−patch)
or directly between the external data source or the
client (Tclient), depending on which one is faster.
Again we assume that the cost of striping data to
the appropriate storage nodes can be hidden by
the downloading time. In calculating REPL’s total
miss cost, we do not count the dataset size k times,
considering that the replication can occur between
the storage nodes themselves without involving
the client. For EC, although the encoding has to
be performed at the client, if the client download-
ing rate is very low, data can still be downloaded
in parallel by the storage nodes and streamed into
the client for encoding. The three activities (par-
allel downloading, client encoding, and striping
the encoded data) can again be pipelined. Hence
the total miss cost is the larger of the download-
ing time (min(Ttail−patch, Tclient)) and the encoding
time (Tencode).

A tail miss is treated as a total miss for REPL
and EC. But for RPDR, since the tail patching can
be hidden behind the prefix access, the total access
time is the larger of Tlocal and Ttail−patch.

Finally, when there is a partial data miss, with
RPDR the access cost is Tpatch. With REPL, there
is essentially no partial miss: if a data chunk is
missing from all replicas, the entire dataset is
treated as a total miss. With EC that encodes n
original data chunks into m redundant chunks, if
data needs to and can be reconstructed, the partial
miss cost is the cost of the slower process between
client data retrieval and decoding, assuming the
two can be perfectly overlapped.

5 Performance Results

5.1 Simulation Overview

We perform trace-driven simulations to evaluate
our proposed striping-enabled cache management
and partial data recovery strategies.

Our simulator takes as input two traces: a node
availability trace and a dataset access trace. The
node availability trace logs the status of a group
of nodes within an institution over a period of
time and reflects the availability of storage nodes
participating in a storage aggregation system. The
dataset access trace logs external scientific dataset
access information (such as file name, size, ac-
cess time, client host name, etc.) within an insti-
tution and reflects the distributed scientific data
cache users’ access pattern. Our simulator com-
bines these two traces to examine data availability,
cache behavior, and recovery performance in a
realistic setting.

We used the desktop availability trace from
Microsoft that consists of “up/down” measure-
ments of 50,000 desktop workstations in their
campus, for a period of 840 h [2]. This trace (called
MS trace for brevity) was collected by recording
the results of periodic “ping” operations to each
workstation: a machine is marked as either “up”
or “down” for each of the 840 h. Note that this re-
quires the coarsening of access time in processing
the dataset access trace. I.e., while we preserve the
original order and access times of dataset access
trace entries, a relevant storage node is considered
available or unavailable according to the availabil-
ity trace for each entire hour.

In order to verify that the collective node be-
havior portrayed by the MS trace is also reflective
of academic settings, we performed a similar data
collection experiment using 600+ workstations at
the Department of Computer Science in North
Carolina State University. The experiments were
conducted for a duration of over 4 months. Both
traces show similar availability trends, with over
60% of the nodes available for over 90% of the
time.

In using the MS trace, we performed multiple
tests, each of which used a group of randomly
selected 50 nodes from the node pool (50,000) as
storage nodes participating in the aggregate cache.
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Since this paper does not focus on heterogeneity
issues, we assume similar I/O rates, network capa-
bilities, and space contributions across the storage
nodes.

For dataset accesses, we obtained two real-
world traces, Jasmine and ARM. Jasmine con-
tains the Jefferson Laboratory researchers’ access
logs to the high-energy physics data hosted at
the Jefferson Lab Asynchronous Storage Man-
ager (JASMine). ARM contains the Oak Ridge
National Laboratory (ORNL) researchers’ access
logs to the Atmospheric Radiation Measurement
(ARM) archive hosted at the HPSS mass storage
system at ORNL. Table 2 summarizes statistics
about the two access traces. One might argue that
the dataset sizes in these traces do not look large
enough to exceed a workstation’s local capacity.
However, scientific users often access collections
of datasets [36], each of which is on the order of a
few GBs, for better portability among file systems.
In addition, as we pointed out earlier, accessing
data in a striped fashion from a distributed cache
has a performance advantage, which justifies the
use of this cache for these traces.

To reduce the simulation time, we filtered the
original Jasmine trace to retain only accesses
to larger datasets (those above a size threshold
of 2000MB). Table 2 shows the number of en-
tries in the filtered trace (the original trace con-
tains 644,132 entries). We consider the trimming
reasonable since scientists would be more inter-
ested in using a distributed cache for their large
datasets.

5.2 Parameterizing the Simulator

This section presents performance parameters
(such as Re and Rn as described in Section 4.3
and the client download rate Rclient) obtained from
our aggregate storage prototype using multiple

Table 2 Data access trace statistics

Trace ARM Jasmine

Duration 157.5 days 19.1 days
No. entries 3709 4000
No. unique datasets 382 1686
Average dataset size 253.7 MB 2047.0 MB

external data sources. These results are used in the
access time calculation in our simulation.

5.2.1 Benchmarking Testbed Configuration

Our testbed (Fig. 2) depicts a scientist’s local re-
search environment, where his/her powerful client
machine has access to external data sources such
as parallel/archival file systems and Web data
repositories, using various data movement tools.

We installed the FreeLoader aggregated stor-
age cache in this setting to study its ability to
transparently patch datasets from external data
sources. Our testbed spreads across Oak Ridge
National Laboratory (ORNL), North Carolina
State University (NCSU), and the TeraGrid (a
Nationally deployed Grid infrastructure). It com-
prises of the following components.

1. Remote data sources where scientists store
and/or share primary copies of their datasets
(identified by the protocol name and the
location of the source): (i) the HPSS [13]
archival storage system (HSI) at ORNL,
accessed through the Hierarchical Storage In-
terface [22] client software, (ii) a web reposi-
tory at NCSU (wget-R) accessed through the
wget interface, and (iii) two GridFTP servers,
enabling access to parallel file systems on
the TeraGrid sites, ORNL (GridFTP-L) and
PSC (GridFTP-R). We used the UberFTP
client interface to access the GridFTP servers.
Figure 2 also shows the connectivity of these

ORNL Subnet Remote Data Sources 

ORNL HPSS HSI,3hops,  
0.3 ms 

Gb Subnet

FreeLoader

TeraGrid
PSC          ORNL 

GridFTP, 
Loc1: 11hops, 31.7ms 
Loc2: 5hops, 0.6 ms 

Client
Linux 2.4.21, AMD 

NCSU HTTP 
Serverwget,12hops, 

29.2 ms 
Parallel get() 

Transparent 
Patching

OC-12 

1Gb/sec

Fig. 2 Benchmarking testbed
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remote data sources to the ORNL subnet,
which results in varied patch bandwidth.

2. The aggregate storage cache at ORNL: an
aggregate storage of 0.5TB with 15 storage
nodes (donating 7-60GBs each) and one man-
ager. Donors have dual Pentium III, Linux
2.4.20-8 kernel, and 100Mb/sec or 1Gb/sec
Ethernet. The storage nodes are equipped to
patch from the remote sources using appropri-
ate protocols as well.

3. A client machine at ORNL with Dual AMD
Opteron, Linux 2.4.21 and GigE, running the
aggregate storage client component. It is at
most five hops away from any of the storage
nodes in the aggregate storage cloud.

5.2.2 Benchmarking Results

In order to obtain the downloading rate of the
entire dataset from the external source, (Rclient),
client access rate of in-cache data (RCw

, where w

is the stripe width), and partial data recovery rate
(Rn, where n is the number of nodes concurrently
patching), we conducted a series of tests based
on our prototype implementation of the aggregate
storage framework. Our bandwidth benchmark-
ing and simulation tests used a target stripe width
of 10, since we observed that for our testbed,
the client access rate saturated at that width (see
Fig. 1b).

To study recovery, we mimic node failures and
have substitute nodes patch, from the external
source, the “holes” due to the loss of stripes.
When n nodes are patching concurrently, each is
retrieving one stripe, chunk by chunk. The total
amount of data retrieved is then n/10 of the entire
dataset’s size. Therefore, when n = 10, the whole
dataset is downloaded in parallel. Through our
tests, we have found that for the data sources
and protocols used, the patching rate per node Rn

does not vary much as we increase n, the number
of nodes patching concurrently. The decrease in
bandwidth ranges between 0 (GridFTP-L) and
4.7% (wget-L) when n grows from 1 to 10. This is
most likely due to the strided data access pattern.
Therefore, we simplify the partial data recovery
model in Section 4.3 and substitute Rn with a sin-
gle R parameter, which is conservatively chosen
as R10.

Similarly, we examined whether the per-node
patching rate could be affected by the patch-
ing node’s concurrent data serving to the client,
since the network interface is shared. Again, we
found the impact to be very small, ranging from
0 (GridFTP-L) to 10% (wget-L). We select the
lower R number, pessimistically, assuming the
patching activity fully overlaps with serving data
to the client.

In addition, we measure the collective down-
loading rate for patching a tail miss and importing
entire datasets, when 10 nodes are fetching a con-
tiguous region of a dataset. The rate is calculated
by including the cost of both the parallel down-
loading and the inter-node data shuffling activi-
ties. We further measure the rate that an entire
1GB dataset is downloaded by the GigE client,
Rclient, as an alternative to fetching the data in case
of a total miss.

Table 3 summarizes our results. The results
reveal two facts. First, the downloading rates are
significantly lower than allowed by the storage
nodes’ network interface. In the case of proto-
cols like GridFTP, which are optimized for large
transfers, the overhead of multiple small accesses,
including authentication and connection estab-
lishment each time around, results in an overall
low patch rate despite high-speed networks. This
suggests that we can minimize the cost of patching
by performing large remote I/O and local data
reorganization. With the wget tests, however, la-
tency incurs a major cost. Second, as mentioned
above, with the scalability we observed, having 10
storage nodes collectively download the dataset
and exchange stripes (at 10 × Rcollective) is faster
than having the GigE client download the whole
dataset (at Rclient). This appears to be true for all
data sources.

To get a rough estimate of Re, the expected
chunk delivery rate from each storage node to the

Table 3 Throughput parameters benchmarked, in MB/s,
using a 1GB dataset

Data source wget-R GridFTP-L GridFTP-R HSI

Rclient 2.3 20.5 3.5 11.5
R 1.1 3.8 1.41 0.91
Rcollective 2.0 7.5 2.02 1.3

All numbers are per-node rates
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Fig. 3 Jasmine trace hit/miss rates (a, b)

client, we divided the FreeLoader client access
rate (89MB/s for a stripe width of 10 for a 1GB
dataset) by the stripe width.

Finally, to estimate the encoding/decoding cost
for erasure coding, we benchmarked the par-
ity check throughput using an efficient imple-
mentation by James Plank (http://www.cs.utk.
edu/∼plank/plank/gflib/parity_test.c). The parity
check throughputs we measured on multiple
workstations are all higher than 100MB/s, and
hence will not be a performance bottleneck since
the encoding/decoding cost will be hidden by the
data transfer between the client and the storage
nodes.

5.3 Simulation Results

5.3.1 Jasmine Trace Results

First, we examine the cache behavior with data
striped on unreliable nodes. The stripe width used
is 10.2 All experiments were repeated 5 times.

2In our experiments we have varied the stripe width and
the results across different widths did not show significant
difference. Therefore we omit the other stripe widths due
to space limitation.

Since the variance in the results were reasonably
small (<10%), we show the average numbers
without error bars. A uniform space donation is
used across the 50 nodes.

Figure 3a shows the caching performance using
the Jasmine trace. We varied the total cache size
from 100GB to 4000GB. For each cache size, the
performance of four strategies is shown side by
side: REPL, EC, RPDR, and CB. CB stands for
“combination”, where we use RPDR as a backup
for EC. In other words, a partial data miss that
cannot be repaired by local redundancy using EC,
is patched using RPDR. In this case, both RPDR
and CB use the base version, without prefix
caching. For each test, we measure the percentage
of accesses (by size) in each hit/miss category: hit,
partial hit, tail miss, and partial miss. The rest are
total misses. “Partial hit” denotes a miss that can
be recovered locally through REPL or EC. With
replication or the fast EC decoding we measured,
there is no performance penalty. “Partial miss”,
on the other hand, denotes a miss that requires
remote accesses. For RPDR, this means that there
are holes missing in the requested dataset. For
REPL, EC, and CB, this means that the cached
dataset cannot be completely recovered with local
redundant chunks.

http://www.cs.utk.edu/~plank/plank/gflib/parity_test.c
http://www.cs.utk.edu/~plank/plank/gflib/parity_test.c
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As mentioned earlier, a tail miss with RPDR
or CB is patched using collective download and
the patch operation can be easily overlapped with
the in-cache access of the dataset. Hence, for these
two strategies, we categorize the cached part of
those datasets as a “hit” and the missing part as
a “tail miss”. This does not apply to REPL or
EC because there any dataset that cannot not be
recovered locally is a total miss.

As expected, for all four strategies, both the hit
rate and the partial hit rate increases as the cache
size grows. The partial miss rate also increases due
to the fact that more datasets are cached. The tail
miss bar is visible only for RPDR and CB since
these two strategies allow partial data recovery
and cache eviction may select the tails of multiple
datasets simultaneously. This rate first grows then
shrinks as the cache gets larger, because the cache
saturates before reaching 4TB and the reduced
space shortage causes fewer tail misses.

Figure 3a indicates that RPDR and CB clearly
outperform REPL and EC. RPDR has signifi-
cantly higher hit rate than the combined hit/partial
hit rates achieved by adding local data redun-
dancy. CB has a lower hit rate than RPDR due
to its space overhead, but compensates that with
its partial hit rate due to erasure coding. This
result indicates that by fetching data from external
sources, RPDR is able to achieve better cache
space utilization than REPL and EC. Meanwhile,
by allowing data patching from external sources as
a fall-back approach when local data redundancy
is inadequate, CB appears to be equally appealing.
CB incurs the same space overhead as EC. How-
ever, reconstructing a partially cached dataset that
was otherwise not recoverable through decoding
makes it more space-efficient.

Although not shown in the chart, we found
that most of the partial data unavailability caused
by node failure involves a single failing storage
node. Therefore, by storing only two replicas,
REPL results in a small partial miss rate (which
will be treated as a total miss in calculating
the miss penalty). EC has more partial miss, as
a result of being able to cache more datasets.
Overall, EC’s caching performance is better than
REPL considering both the “hit” and “partial hit”
categories.

Figure 3b compares different versions of
RPDR and CB, with and without the prefix
caching enhancement. The versions with prefix
caching are denoted as “RPDR-P” and “CB-P”,
respectively. With prefix caching, we only cache
a prefix of each dataset. The prefix size is de-
termined by calculating the maximum length of
the missing tail such that the patching cost can
be hidden by the prefix access time. When more
cache space is needed, however, chunks from the
cached prefix will be evicted, causing a remote
patching penalty. Therefore, we divide the tail
miss data into two parts: “invisible tail”, whose
recovery can be hidden by the prefix access, and
“tail”, whose fetching cost is visible to the client.

As can be seen from Fig. 3b, prefix caching
significantly increases the total amount of tail
miss (“invisible tail” plus “tail”). However, the
combined size of cache hit and invisible tail miss
is greater compared to when not using prefix
caching. This is true for both RPDR and CB.
The improvement is more obvious for medium
cache sizes, 0.5TB and 1TB, where a considerable
portion of hot datasets is cached but the total
cache space is still insufficient. The base version
(without prefix caching) also evicts chunks from
the tail of victim datasets. With prefix caching,
however, the initial, in-cache prefix is decided by
the size of each individual dataset and the remote
recovery cost. Therefore, a larger portion of the
access falls into the “invisible tail” category. This
trend becomes more obvious when the cache size
is larger, where there is fewer visible tail miss and
many invisible ones.

Figure 4 depicts, for each external data source,
the total access time for the Jasmine trace calcu-
lated from the above tests using our cost mod-
els. For each cache size, the total access time is
computed by adding the access time of each trace
entry. Since Fig. 3b shows that the versions with
prefix caching work better than the base versions
of RPDR and CB, we only plot the performance
of RPDR-P and CB-P.

Our results show that once again CB and
RPDR clearly outperform REPL and EC in most
cases. The only exception is with small to medium
cache size with our fastest source (GridFTP-L).
In this case, the collective download rate is high
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Fig. 4 Jasmine trace access times (a–d)

(7.5 MB/s per node, making 75MB/s when 10
nodes are concurrently downloading). This way,
the higher rate of a total miss caused by REPL and
EC becomes less expensive, while the “hole patch-
ing” of RPDR and CB appears relatively slow. In
all other cases, RPDR-P and CB-P outperform
approaches using local data redundancy, espe-
cially with medium to large cache sizes. RPDR-P
outperforms REPL by up to 37% and EC by up
to 36%, while CB-P outperforms REPL by up to
38% and EC by up to 36%.

Despite their large difference in space usage,
EC and REPL have very similar performance.
In most cases EC performs slightly better, which
is consistent with the caching performance result
(Fig 3a). Meanwhile, neither of RPDR-P and CB-

P appears to be a clear winner and they have very
similar performance.

5.3.2 ARM Trace

Due to space limitations, we present just the ac-
cess time results for the ARM trace. Since this
trace is significantly smaller compared to the Jas-
mine trace in the total dataset size, the cache sizes
that we used are also much smaller. Also, due to
the smaller dataset sizes, we use the base versions
of RPDR and CB rather than those with prefix
caching.

Figure 5 portrays the access time results with
the ARM trace for the four external data sources.
Here, CB appears to be a consistent good choice.
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Fig. 5 ARM trace access times (a–d)

In this set of experiments, CB outperforms REPL
by up to 54% and EC by up to 12.2%.

6 Conclusion

In this paper we studied data availability and
recovery issues with distributed caches built on
unreliable, donated desktop space. We proposed
a striping-aware cache management strategy for
this unique environment, upon which we studied
three data recovery approaches (remote partial
data recovery, replication, and erasure coding).

We demonstrated, with real-world scientific
data access traces and performance parameters
measured from a distributed cache prototype, that
our proposed approaches based on direct data

recovery from remote data sources perform sig-
nificantly better than the ones totally relying on
the local data redundancy. In particular, the CB
approach, which combines erasure coding with
remote partial data recovery, delivers the best
performance in the majority of test cases.
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